On 2-Approximation to the Vertex-Connectivity in Graphs
نویسنده
چکیده
Given a graph G, we give a fast algorithm for approximating the vertex connectivity κ of G. Our algorithm delivers a minimum vertex cut of G if κ <= δ/2 , and returns a message “κ > δ/2 ” otherwise, where δ denotes the minimum degree of G. The algorithm runs in O(n2(1+min{κ2, κ√n}/δ)) time and O(n+m) space, where n and m denote the numbers of vertices and edges in G, respectively. key words: graph algorithm, approximation algorithm, vertexconnectivity, MA orderings, minimum degree
منابع مشابه
The augmented Zagreb index, vertex connectivity and matching number of graphs
Let $Gamma_{n,kappa}$ be the class of all graphs with $ngeq3$ vertices and $kappageq2$ vertex connectivity. Denote by $Upsilon_{n,beta}$ the family of all connected graphs with $ngeq4$ vertices and matching number $beta$ where $2leqbetaleqlfloorfrac{n}{2}rfloor$. In the classes of graphs $Gamma_{n,kappa}$ and $Upsilon_{n,beta}$, the elements having maximum augmented Zagreb index are determined.
متن کاملCentric connectivity index by shell matrices
Relative centricity RC values of vertices/atoms are calculated within the Distance Detour and Cluj-Distance criteria on their corresponding Shell transforms. The vertex RC distribution in a molecular graph gives atom equivalence classes, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides a new index, called Centric Connectivity CC, which can be useful in the topologi...
متن کاملEccentric Connectivity Index of Some Dendrimer Graphs
The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.
متن کاملTricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity
Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n...
متن کاملA note on polyomino chains with extremum general sum-connectivity index
The general sum-connectivity index of a graph $G$ is defined as $chi_{alpha}(G)= sum_{uvin E(G)} (d_u + d_{v})^{alpha}$ where $d_{u}$ is degree of the vertex $uin V(G)$, $alpha$ is a real number different from $0$ and $uv$ is the edge connecting the vertices $u,v$. In this note, the problem of characterizing the graphs having extremum $chi_{alpha}$ values from a certain collection of polyomino ...
متن کاملOn Approximability of the Minimum-Cost k-Connected Spanning Subgraph Problem
We present the rst truly polynomial-time approximation scheme (PTAS) for the minimum-cost k-vertex-(or, k-edge-) connected spanning subgraph problem for complete Euclidean graphs in R d : Previously it was known for every positive constant " how to construct in a polynomial time a graph on a superset of the input points which is k-vertex connected with respect to the input points, and whose cos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 88-D شماره
صفحات -
تاریخ انتشار 2005